

Aula 5 Algoritmos Methaheurísticos Busca Tabu e Simulated Annealing

Prof. Dr. Peterson A. Belan

PPGI - 2024

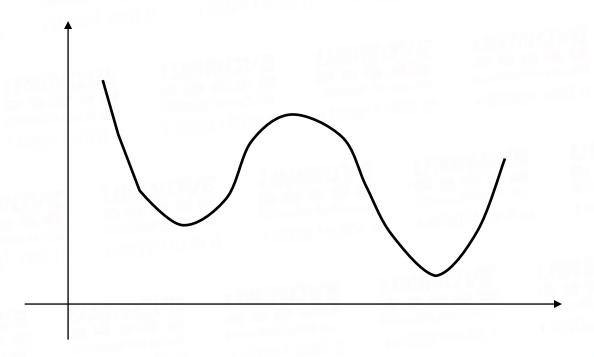
Busca Tabu (BT)

A Busca Tabu é um método iterativo de otimização local que admite soluções de piora para escapar de ótimos locais. A cada iteração seleciona-se o melhor vizinho s' do estado corrente s. Independentemente de s' ser melhor ou pior que s, s' será o novo estado corrente. Se s' for melhor que a melhor solução encontrada até o momento s*, então esta é substituída por s'.

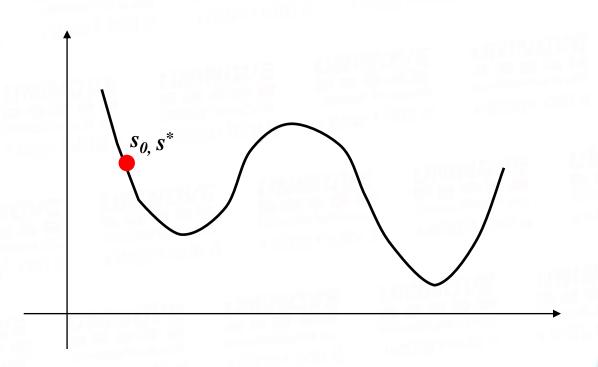
Como esse mecanismo não é suficiente para escapar de ótimos locais, uma vez que poderia haver retorno a uma solução previamente gerada, o algoritmo usa o conceito de lista tabu, a qual registra os estados que já foram visitados. O algoritmo chega ao fim quando alcança um certo critério de parada, geralmente número de iterações sem melhoras.

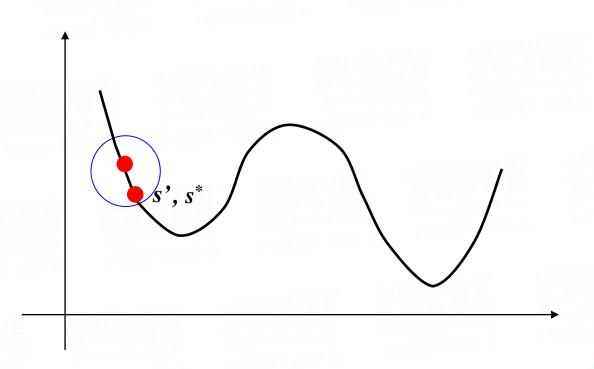
Busca Tabu (BT)

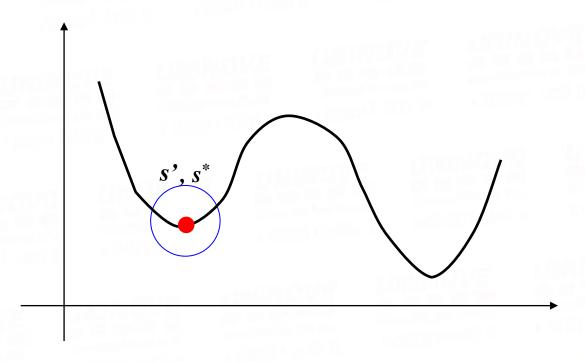
Início

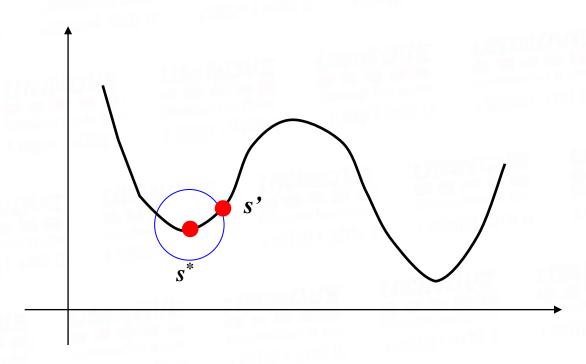

Seja s_0 a solução inicial (gerada aleatoriamente), s a solução representada pelo estado corrente, s a solução representada pelo melhor vizinho do estado corrente, s* a melhor solução obtida até então, Iter o contador do número de iterações, Melhor_Iter a iteração mais recente que forneceu s*, Max_Iter_sm o número máximo de iterações sem melhoria de s* e T a lista tabu

```
T \leftarrow \emptyset
s^* \leftarrow s_0
s \leftarrow s_0
Iter \leftarrow 1
Melhor Iter \leftarrow 1
Max Iter sm \leftarrow 50
T \leftarrow T \cup s_0
Enquanto (Iter – Melhor_Iter \leq Max_Iter_sm) Faça
   Seleciona sucessor s'\{s' \notin T\}
   s \leftarrow s
   T \leftarrow T \cup s
   Se f(s) > f(s^*) Então
        s^* \leftarrow s
        Melhor\_Iter \leftarrow Iter
   Fim-se
   Iter \leftarrow Iter + 1
Fim-enquanto
Retorne s*
```

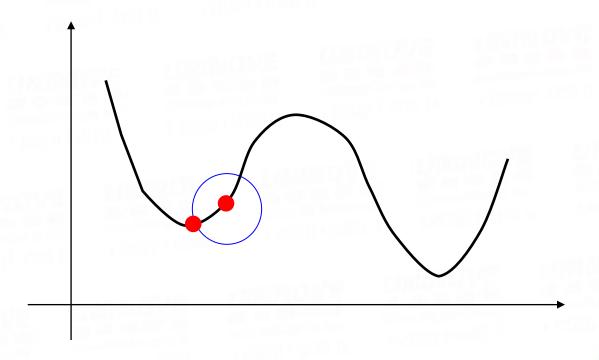

Fim


Busca Tabu - simulação

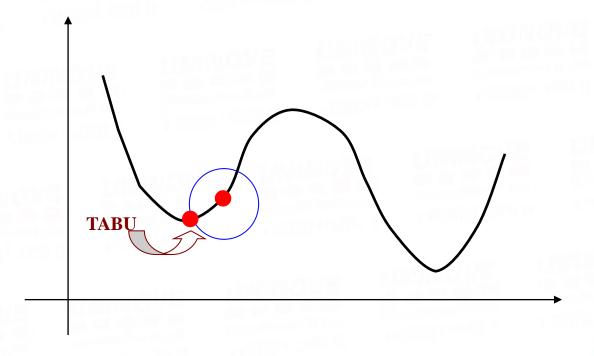


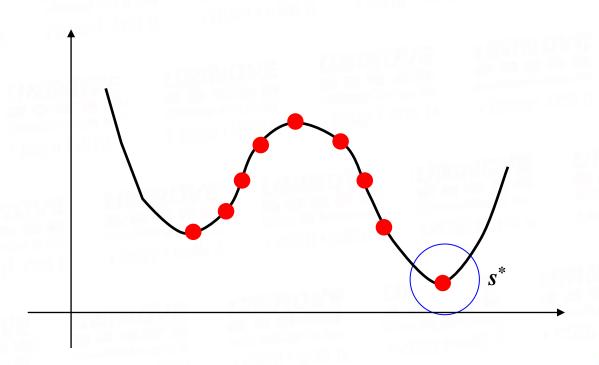


Problema: Fica-se preso no primeiro ótimo lo



O melhor vizinho pode ser de piora!


Mover para o melhor vizinho


Problema: Ciclagem

Ideia: Lista Tabu

O algoritmo Simulated Annealing ou algoritmo de arrefecimento simulado, baseado no processo de recozimento de metais, é uma versão estocástica do conhecido algoritmo Subida de Encosta.

Neste algoritmo, movimentos para estados melhores que o estado corrente são sempre aceitos. Caso o movimento seja para um estado de piora, ele pode ser aceito com uma determinada probabilidade que diminui com o tempo. Desta forma, nas iterações finais do algoritmo, somente soluções melhores são aceitas já que a probabilidade de aceitação de uma solução pior é quase nula (RICH; KNIGHT, 1994; RUSSEL; NORVIG, 1995).

- Proposto originalmente por Kirkpatrick et al. (1983), fundamenta-se na analogia com a termodinâmica, ao simular o resfriamento de um conjunto de átomos aquecidos.
- O algoritmo SA foi inspirado no algoritmo de Metropolis para a resolução de problemas de otimização.
- Metropolis et al. (1953) propuseram um algoritmo para a simulação de um conjunto de átomos em equilíbrio a uma determinada temperatura.

- ✓ SA é um método de busca que aceita movimentos de piora, dada uma certa probabilidade, para escapar de ótimos locais.
- ✓ A probabilidade P de aceitação de soluções piores depende do parâmetro temperatura (Temp) que é um dos principais parâmetros do SA.
- ✓ Deve-se iniciar (*Temp*) com valor alto para evitar convergência precoce para um mínimo local, e decair gradativamente a cada iteração (uma dentre outras alternativas).

Início

Seja s_0 a solução inicial (gerada aleatoriamente), s a solução representada pelo estado corrente, s a solução representada pelo sucessor do estado corrente, s a melhor solução obtida até então, Iter o contador do número de iterações, Max_Iter o número máximo de iterações, ΔE a variação entre f(s) e f(s'), P a probabilidade de aceitar soluções piores que a atual, Temp uma temperatura que controla a probabilidade P

```
s \leftarrow s_0
s^* \leftarrow s_0
Iter \leftarrow 1
Max_Iter ← Qtd_Maxima_Iterações
Enquanto (Iter ≤ Max_Iter) Faça
     Temp \leftarrow Max\_Iter - Iter
     Se Temp=0 Então
         Retorne s*
     Fim-se
     Gera sucessor s'{aleatoriamente}
     \Delta E \leftarrow f(s') - f(s)
     Se \Delta E > 0 Então
         s \leftarrow s'
     Senão
         P \leftarrow e^{\Delta E/Temp}
         s \leftarrow s' {somente com uma certa probabilidade P}
    Fim-se
     Se f(s) > f(s^*) Então
         s^* \leftarrow s
     Fim-se
     Iter \leftarrow Iter + 1
Fim-enquanto
Retorne s*
```

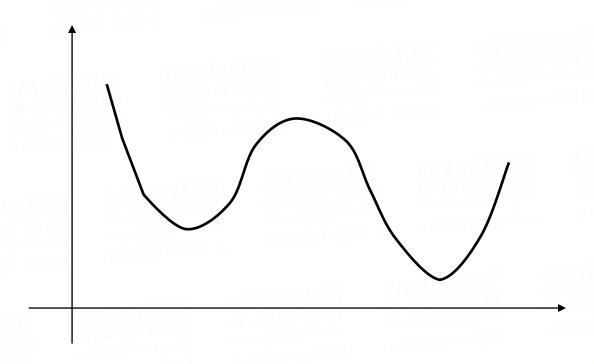

- Para um problema de maximização:
- ΔE = fo_solução sucessora fo_solução atual
- Se ΔE > 0, a solução sucessora é aceita e passa a ser a solução atual.
- Se ΔE < 0, a solução candidata sucessora poderá ser aceita com uma determinada probabilidade P, onde:

$$P = e^{(\Delta E/T)}$$

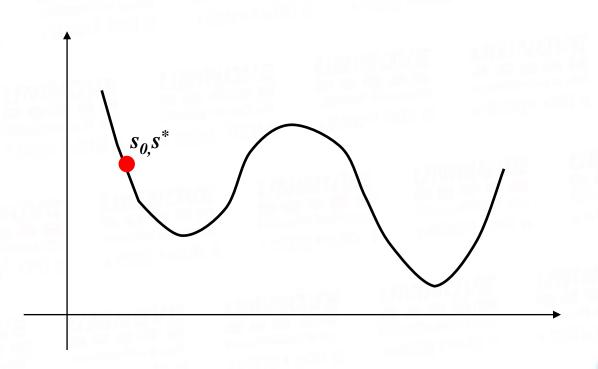
T = Temp

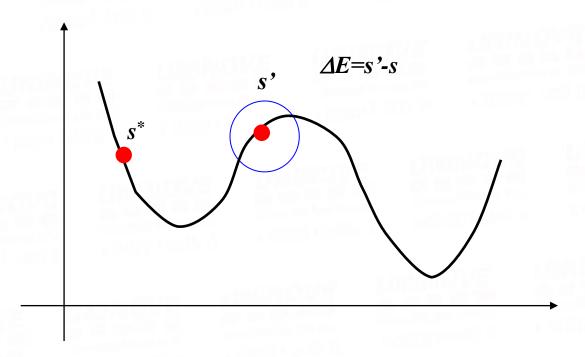
- Para um problema de minimização:
- ∆E = fo_solução sucessora fo_solução atual
- Se ∆E ≤ 0, a solução sucessora é aceita e passa a ser a solução atual.
- Se ΔE > 0, a solução candidata sucessora poderá ser aceita com uma determinada probabilidade P, onde:

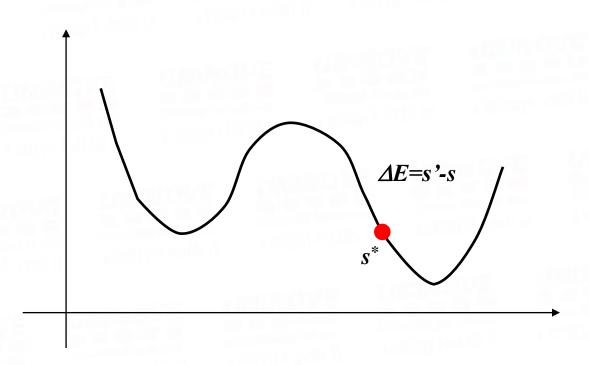
$$P = e^{(-\Delta E/T)}$$

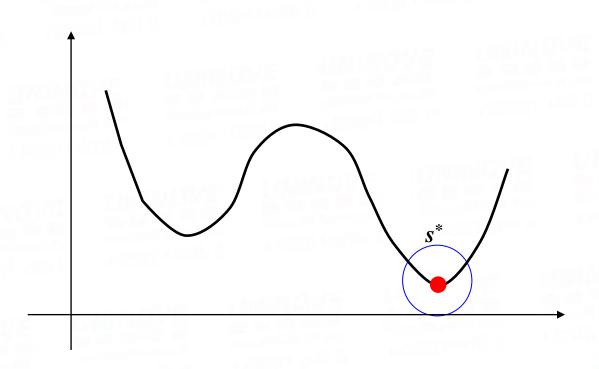


ção			
		s'-s	11111111
s'	S	DE	P=e^(DE/T)
8	9	-1	0,990
8	9	-1	0,989
8	9	-1	0,986
8	9	-1	0,980
8	9	-1	0,967
8	9	-1	0,936
8	9	-1	0,819
8	9	-1	0,607
7	9	-2	0,135
	s' 8 8 8 8 8 8 8 8	s' s 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	s' s DE 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1 8 9 -1


Minimizaç	ão			
			s' -s	
Т	s'	S	DE	P=e^(-DE/T)
100	9	8	1	0,990
90	9	8	1	0,989
70	9	8	1	0,986
50	9	8	1	0,980
30	9	8	1	0,967
15	10	8	2	0,875
5	10	8	2	0,670
2	11	8	3	0,223
1	11	8	3	0,050


Simulated Annealing - Simulação





s' vizinho pode ser de piora!

Referências

KIRKPATRICK, S.; GELATTI, C. D.; VECCHI, M. P. Optimization by Simulated Annealing. Science, New Series, v.220, n.4598, p. 671-680, May. 1983.

LUKE, S. Essentials of metaheuristics. 2. ed. Raleigh: Lulu, 2013.

METROPOLIS, N. et al. Equation of state calculations by fast computing machines. Journal of Chemical Physics. v.21, p.1087-1092, 1953.

RUSSELL, S. J.; NORVIG, P. Inteligência artificial . 2. ed. Rio de Janeiro: Campus, 2004.

SOUZA, M. J. F. Inteligência Computacional para Otimização, Notas de aula, Departamento de Computação, Universidade Federal de Ouro Preto, disponível em: http://www.decom.ufop.br/prof/marcone.

